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Abstract
We consider the long-time behaviour of the reversible diffusion-influenced
reaction A + B � C when A and C are immobile electronically excited states
and B particles are in excess. A and C have different lifetimes. When C decays
faster than A, the two leading terms of the asymptotic behaviour are obtained
analytically by mapping this problem onto an effective irreversible reaction. The
first term is exponential, and it coincides with that obtained from conventional
rate equations with steady-state diffusion-influenced rate constants. The second
term in the exponent is

√
t , as in the Smoluchowski irreversible kinetics.

1. Introduction

Bimolecular reversible reactions in solution approach equilibrium not exponentially but as a
power law (t−3/2 in three dimensions). This behaviour for A + B � C was first predicted [1]
using physical arguments based on spatial concentration fluctuations. The basic idea is that the
final approach to equilibrium is determined by the diffusion of the particles. The power law
decay was subsequently obtained in various ways [2–4]. The amplitude of this decay remained
elusive until recently. Analytical expressions for the amplitude of the relaxation were obtained
in a few special cases [5–9] and later a complete rigorous solution of the problem for arbitrary
concentrations and diffusion coefficients of the reactants was presented in [10, 11].

The problem becomes more complicated when the reaction involves excited states, A and
C , with different decay rates:

A + B
κf←−−→
κr

C

↓ kA ↓ kC.

(1)

One example of such a reaction is excited-state proton transfer to solvent [12, 13]. In the
geminate limit (an isolated A or C), the kinetics of the above reaction can be found exactly
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for arbitrary decay rates [14, 15]. Depending on the reactants’ lifetimes, the concentration
relaxation switches from t−3/2 exp(−kAt) (when kA < kC + kr where kr = κrkD/(κf + kD)

and kD is the diffusion-controlled rate constant) to pure exponential behaviour (when kA >

kC + kr) [14, 16]. In the transition point (kA = kC + kr), the asymptotic decay follows
t−1/2 exp(−kAt).

The situation changes if finite concentration of reactants is taken into account. Only when
the lifetimes of A and C are equal do the concentrations decay as t−3/2 exp(−kAt). The
simplest generalization of the geminate case to finite concentration is the pseudo-first-order
limit in which B molecules are in excess. For this case, several approximate theories have been
developed [17–24]. Using ‘kinetic theory’ [18], Kwac et al [21] suggested that the long-time
behaviour of the excited-state reversible reaction is always purely exponential (except when
kA = kC ). This has been tested using Brownian dynamics simulations [25]. However, the
exponent of the decay was found only numerically.

In this paper we will show how to determine the leading terms of the long-time kinetics
analytically for the case when C decays faster than A. In the derivation we exploit the analogy
of this reversible reaction with an effective irreversible reaction A + B → C ([B] � [A]) for
which the exact solution is available when A is static [26, 27].

In the following section, after formulating the problem, we give, as our main result, the
long-time kinetics of the reaction and an explicit expression for the two leading terms of the
asymptotics. Section 3 gives details of the derivation based on a many-particle formulation of
the problem.

2. Formulation and results

Consider a static A particle surrounded by randomly distributed diffusing Bs (with diffusion
constant D). When a B particle approaches an A particle at distance R, they can react with the
forward intrinsic rate constant κf to form a static C . The latter may dissociate into a contact
A–B pair with the reverse intrinsic rate constant κr. Both A and C decay to their ground states
with the rate constants kA and kC (see (1)). It is assumed that kC > kA. The key idea is that
this process (i.e., when an A particle turns into the short-lived C after reaction with Bs) can
be represented as an effective irreversible reaction at long times. The irreversible reaction is
exactly described by the Smoluchowski kinetics.

Our main result is that the survival probability of A in the reversible reaction, SAA(t) =
[A(t)]/[A(0)] provided initially there were only A particles, is proportional at long times to
the Smoluchowski kinetics with an effective rate coefficient:

SAA(t) ∼ α exp

(
−[B]

∫ t

0
kirr(t

′) dt ′ − kAt

)

α = kC − k + kr

[B]kf + kr + kA + kC − 2k
,

(2)

where

kf = κf4π DR

κf + 4π DR
, kr = kf/Keq (3)

are the steady-state rate constants (which differ from the intrinsic rate constants κf and κr),
Keq = κf/κr. The effective rate coefficient kirr(t) has the following Laplace transform
(φ̂(s) = ∫ ∞

0 φ(t) exp(−st) dt):

1

sk̂irr(s)
= 1

κf f̂ (−k)
+ 1

sk̂D(s)
(4)
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where sk̂D(s) = 4π DR(1 + √
s R2/D). It differs from the well-known Collins–Kimball rate

coefficient for the irreversible reaction only by the factor f̂ (−k) in the intrinsic rate constant,
where f̂ (s) is given by

f̂ (s) = s + kC

s + kC + κr
(5)

and k is defined as the least square root of the following self-consistency relation:

k = [B] κf f̂ (−k) 4π DR

κf f̂ (−k) + 4π DR
+ kA. (6)

This equation can be readily solved:

k = (k0 + kA + kC)/2 −
√

(kC − kA − k0)2/4 + μk0(kC − kA) (7)

where k0 = [B]kf +kr and μ = (1+[B]Keq)
−1. In the irreversible limit (κr → 0 or kC → ∞),

f̂ (−k) = 1, α = 1 and equation (2) reduces to the exact result for the irreversible reaction.
At long times, the exponent in equation (2) can be further simplified by using

kirr(t) ∼ kss + k2
ss

4π D

1√
π Dt

, (8)

where kss = kirr(∞) is the long-time limit of the effective rate coefficient,

kss = κf f̂ (−k)4π DR

κf f̂ (−k) + 4π DR
. (9)

Substituting this in equation (2) we get the leading terms of the asymptotic behaviour,

SAA(t) ∼ exp

(
−kt − (k − kA)2

√
t

2[B](π D)3/2

)
. (10)

It is interesting that the first leading term, exp(−kt), can be obtained from conventional rate
equations with the steady-state forward and reverse rate constants kf and kr (see equation (3)).
The exponential decay is corrected by the square root term. Being in the exponent, this term
may significantly decrease SAA(t) at long times.

The kinetics of the reaction that starts from C particles, SAC (t) = [A(t)]/[C(0)], can be
found by using the relation for the Laplace transforms which extends the result for the problem
without lifetimes [28] and was derived in [22]:

(s + kA)ŜAA(s) + Keq[B](s + kC)ŜAC(s) = 1. (11)

The kinetics of C provided initially there were only A particles, SC A(t) = [C(t)]/[A(0)], is
obtained using conservation law extended to the unimolecular decay

(s + kA)ŜAA(s) + (s + kC)ŜC A(s) = 1 . (12)

An analogous equation is used to get SCC (t) = [C(t)]/[C(0)]. As a result we find

SAC (t) ∼ k − kA

Keq[B](kC − k)
SAA(t)

SC A(t) ∼ k − kA

kC − k
SAA(t)

SCC (t) ∼ (k − kA)2

Keq[B](kC − k)2
SAA(t)

(13)

where SAA(t) is given by equation (2). Thus the leading terms of the long-time kinetics of both
A and C do not depend on the initial conditions.
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3. Derivation

To get the results in section 2 from the many-particle formulation of the problem, consider one
A or C particle in the origin and N diffusing Bs in a volume V . This system is described by the
probability density FA({r}, t) for the A particle while Bs are located at {r} = {r1, r2, . . . , rN }
and the probability density FCi ({r 
=i }, t) for the C which is formed after association of the A
with i th B while all the others are located at {r 
=i } = {r1, . . . , ri−1, ri+1, . . . rN }. These obey
the following equations:

∂

∂ t
FA =

N∑
i=1

[
D∇2

i FA − Wf(ri )FA + Wr(ri)FCi

] − kA FA (14a)

∂

∂ t
FCi =

N∑
j 
=i

D∇2
j FCi +

∫
d�ri Wf(ri )FA − (κr + kC)FCi (14b)

where the terms with Wf(ri ) = κfδ(ri − R)/4π R2 and Wr(ri ) = κrδ(ri − R)/4π R2 describe
the forward and reverse reactions respectively. Both FA and FC obey the reflecting boundary
condition at r = R. Initially, there is only an A particle, so FA(t = 0) = V −N and
FCi (t = 0) = 0. The survival probability SAA(t) is obtained from FA({r}, t) by integrating
over the coordinates of all Bs and taking the thermodynamic limit (N → ∞ and V → ∞ with
N/V = c).

In the absence of dissociation (Wr = 0), the many-particle equation for FA can be solved
exactly [26, 27], resulting in the Smoluchowski kinetics:

SAA(t) = exp

(
−[B]

∫ t

0
kirr(t

′) dt ′ − kAt

)
(15)

where the Laplace transform of kirr(t) is given in equation (4) with f̂ (−k) = 1.
To map the equations for the reversible reaction onto those for the effective irreversible

reaction, we formally solve the equation for FCi , equation (14b), and substitute the solution
into equation (14a). In this way we get a closed equation for FA:

∂

∂ t
FA =

N∑
i=1

[
D∇2

i FA − Wf(ri )Ki FA

]
− kA FA. (16)

Here Ki is the time-dependent operator acting on the coordinates of all particles except i :

Ki FA ≡
∫ t

0
f (t − t ′)e(t−t ′)

∑
j 
=i D∇2

j FA({r}, t ′) dt ′, (17)

where exp(−t D∇2
j ) is the free Green’s function of the j th B particle and f (t) is defined as

f (t) = δ(t) − κre
−(κr+kC )t (18)

whose Laplace transform is given in equation (5). For an irreversible reaction (κr = 0),
f (t) = δ(t) (or f̂ (s) = 1 in the Laplace space). In the general case we approximate
f̂ (s) by its value at s = −k, where k is defined as the rightmost irregular point (a pole or
any other singular point) that determines the long-time behaviour of the kinetics. With this
approximation, equation (16) becomes equivalent to the equation for the irreversible reaction
with κf replaced by κf f̂ (−k). After integrating over the coordinates of Bs and taking the
thermodynamic limit, we get the survival probability of the irreversible reaction, equation (2),
with the redefined forward intrinsic rate constant given in equation (4).

The final step is to define the location of the singular point k. It is found a posteriori from
the long-time behaviour of the effective irreversible kinetics. Using the fact that at long times
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kirr(t) approaches its steady-state value kss, equation (9), we find that k = [B]kss + kA and get
the self-consistent equation for k, equation (6)

The method described above does not allow one to determine the amplitude α of the
long-time behaviour. However, it can be approximated by the amplitude obtained from the
conventional rate equations. As a result we get α given in equation (2).
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